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Abstract

In this paper, we describe a way to improve the performance
of hand-tailorable planners by compiling each domain de-
scription into a separate domain-specific planner. We discuss
why and when this approach can be useful, and we present
experimental results showing that our approach produces sig-
nificant increases in the speed of planning.

Introduction
In this paper, we describe a way to improve the performance
of hand-tailorable planners by compiling each domain de-
scription into a separate domain-specific planner.

So far, hand-tailorable planners have mainly been consid-
ered to beinterpretersof their domain description language.
In our approach, the planner is acompilerof its domain de-
scription language. The input to a planner is a domain de-
scription like the one in an ordinary hand-tailorable planner,
and the output is a program specifically generated for that
planning domain. The program can then be run to solve
problems in that domain. This can give the planner all of
the advantages that a compiled program can have over an
interpreted program.

This is a general technique that in principle can be ap-
plied to any hand-tailorable planner—and by compiling do-
main descriptions directly into low-level executable code,
we can do implementation-level optimizations that are not
otherwise possible and have not been explored in previous
research on AI planning. These optimizations can be cou-
pled with the other speed-up techniques that the AI-planning
community has developed (domain analysis and other auto-
mated domain information synthesis techniques) in order to
obtain additional speedups.

In this paper, we describe the compilation process, and
provide empirical results to show the improvements made
possible by our approach.

Background
Hand-Tailorable Planning
Existing planning technology can be divided into the follow-
ing categories:

• Domain-specific planners, which only work in a single
problem domain. In domain-specific planning, a planner

is built from scratch for each new problem, using tech-
niques specific for that problem to improve the efficiency
of the planning process. Examples include ICAPS (Nau,
Regli, & Gupta 1995), Remote Agent (Muscettolaet al.
1998), Bridge Baron (Smith, Nau, & Throop 1998), and
Mars Rover (Dias, Lemai, & Muscettola 2003).

• Fully automated domain-independent planners (e.g.,
nearly all classical planning systems). The biggest ad-
vantage of using such planners is that by abstracting the
planning mechanism, they provide the user with the abil-
ity to reuse them for other domains without requiring
much effort. However, as shown in (Bylander 1991;
Erol, Nau, & Subrahmanian 1995), even with reasonable
restrictions, general-purpose planning is at least PSPACE-
hard. This makes general-purpose planning a less attrac-
tive choice in real-world domains.

• Hand-tailorable domain-independent planners. A hand-
tailorable planner is usually a general-purpose planner.
However, in contrast to automated planners where the
domain description contains only the planning operators,
hand-tailorable planners provide a richer domain descrip-
tion language so that the input to the planner can include
advice to the planner on how to search for a plan. Hand-
tailorable planners can be described therefore as domain-
independent planners which give their user the option to
specify domain-specific advice in domain description.
Most hand-tailorable planners are Hierarchical Task Net-
work (HTN) planners; some of the best-known examples
include Nonlin (Tate 1977), SIPE2 (Wilkins 1990), O-
Plan (Currie & Tate 1991; Tate, Drabble, & Kirby 1994),
UMCP (Erol, Handler, & Nau 1994), and SHOP2 (Nauet
al. 2003). More recently, hand-tailorable planners have
been built in which the domain knowledge consists of
control rules; the best-known examples are TLPlan (Bac-
chus & Kabanza 2000) and TALplanner (Kvarnström &
Doherty 2001).

Hierarchical Task Network Planning

Although the compilation technique described in this paper
can be applied to any hand-tailorable planner, we chose to
apply it to SHOP2, an HTN planner. Because of this, un-
derstanding how the compilation process works will require
the reader to understand what HTN planning is., so we now
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describe it briefly.
In an HTN planning system, instead of the traditional goal

formula, the objective is to accomplish a partially-ordered
set of giventasks. Each task can be decomposed into sev-
eral subtasks using predefinedmethods. Each possible de-
composition represents a new branch in the search space of
the problem. At the bottom level of this hierarchy lieprim-
itive tasks, whose actions can be executed using atomic op-
erators. The plan still consists of a sequence of actions, but
the correctness definition of the plan differs. In traditional
planning, a plan is correct if it is executable, and produces
a state that satisfies the goal formula. In HTN planning, a
plan is correct if it is executable, and it accomplishes the
given tasks. In other words, the main focus of an HTN plan-
ner is to perform tasks, while a traditional planner focuses
on achieving a desired state.

Compilation Process
The compilation process is depicted in Figure 1. We have
implemented it in Java; our system is called JSHOP2. As
can be seen, JSHOP2 has two different sets of inputs:

• First, a domain description is fed to JSHOP2. JSHOP2’s
domain descriptions are identical to those of SHOP2, and
are composed of methods, operators, and axioms. Both
the methods and operators include logical expressions that
describe their preconditions. The axioms are horn-clause
like statements that can be used to infer preconditions that
are not explicitly present in the current state of the world.
JSHOP2 contains domain-independent templates for
methods, operators, axioms, and logical expressions.
Each time one of these elements (method, operator, ax-
iom, or logical expression) occurs in the domain descrip-
tion, JSHOP instantiates the corresponding template ac-
cordingly. The result is a piece of code that implements
the behavior of the corresponding element. JSHOP2 also
has a template for the general SHOP2 planning algorithm,
and it instantiates and tunes this template according to
various characteristics of the domain. Thus, the result-
ing code base includes the code for each element of the

domain, and a specific instance of SHOP2 algorithm for
that domain.

• To solve the actual problems in a compiled domain, one
has to compile the problem description. Again, there is
a problem template that is instantiated according to the
problem description. The result is an executable code
which can be run to solve the problem. This executable
code makes use of the domain code base created in the last
step, and also a small library of domain-independent code
that includes basic operations and data structures that are
common to every SHOP2 domain.

In much of the work done on planner compilation and
synthesis (some of which are discussed in the related work
section), the planners are usually generated in some kind of
an intermediate abstract language. This intermediate code
can then be translated into a lower-level language to be ex-
ecuted. In contrast, we decided to produce our planner
directly in a low-level executable language (namely Java).
This gave us much greater power and flexibility to optimize
the planner. Here are two examples of optimizations that
this decision has made possible:

• Using static data structures instead of dynamic ones:Sev-
eral of the elements in the SHOP2 planning process are
maintained in dynamic data structures such as lists rather
than static ones such as arrays. This is the case mainly
because SHOP2 is a general purpose algorithm and does
not know in advance how big these elements are going
to get, so it cannot use static data structures. This is a
huge waste of memory and time in many cases, because
very often the size of these elements can be determined
given the domain description. So by compiling those do-
main descriptions, we acquire the ability to fix the size
of those elements at compile time and thus use more ef-
ficient arrays rather than lists. Being able to simplify the
data structures in hand-tailorable planners is of great im-
portance because usually, a good domain description in
such planners is very elaborate and complex and therefore
requires complex data structures.



• Producing customized backtracking code:Implementing
backtracking has been a difficulty for planner designers,
because of the fact that whenever a planner backtracks on
a decision, it needs to undo all the changes made by that
decision to the state of the world. This problem is even
worse for HTN planners like SHOP2 because they have
to keep track of a task network also, and task networks
are much more complicated data structures compared to
states of the world which are merely a collection of atoms.

There are generally two different approaches to address
this issue: One is two copy the entire data structure for
the state of the world (and task networks for that mat-
ter) whenever a decision is made and use that copy from
there on, and simply discard the copy and use the original
version in case of a backtrack. The second approach is
to design the data structures in a way that changes made
to them can be kept track of and be undone in case of a
backtrack. The first approach uses a lot of memory, while
the second approach uses a lot of time (because the data
structure is much more complex and therefore it is harder
to change or update it). The first approach is more useful
if there is not that much backtracking while the second
approach is more useful if there is lots of backtracking
and therefore there is not enough memory to copy the en-
tire data structure over and over again. Moreover, if there
are decision points where planner can make sure that no
backtracking is going to happen, there is no need to keep
track of anything. While a general purpose planner uses
the same technique for keeping track of data structures at
each decision point, a problem-specific planner can ad-
just its technique for each specific decision point. In our
system, we introduce a family of data structures each of
which is suitable for decision points where backtracking
happens with a certain frequency, and according to our
assessment of the frequency of backtracking in each de-
cision point, we use one of those data structures in the
produced code.

Experimental Results

To test JSHOP2, we did experiments comparing it to two
other planning systems, both of which are available from
their authors as open-source software:

• JSHOP. This is a Java implementation of the SHOP plan-
ning algorithm (Nauet al. 1999). As input, it takes
the same domain descriptions as SHOP. These domain
descriptions are a restricted version of SHOP2’s domain
descriptions, the biggest restriction being that all sets of
tasks must be totally ordered.

• SHOP2 (Nauet al. 2003). This planner is a Lisp imple-
mentation of the planning algorithm described in (Nauet
al. 2001). It has more capabilities than the original SHOP
algorithm, the main enhancement being that sets of tasks
may be partially ordered so that subtasks of different tasks
can be interleaved.

Below we describe the reasons for choosing these planners
for our comparison.

Comparing SHOP2’s and JSHOP2’s running times should
give a rough sense of what kind of a speed-up can be
achieved using our approach, because SHOP2 and JSHOP2
are essentially two different implementations of the same
planning algorithm—the difference being that one acts as an
interpreter of its input and the other one acts as a compiler
of its input.

If the only experimental comparison were between
SHOP2 and JSHOP, it would be difficult to tell whether
the difference in speed between JSHOP2 and SHOP2 was
because of compilation versus interpretation, or because of
speed differences between the languages in which they are
implemented (JSHOP2 is implemented in Java and SHOP2
is implemented in Common Lisp). To address this issue, we
also wanted to compare JSHOP2 with a Java implementa-
tion that runs interpretively the way SHOP2 does. The only
available such implementation was JSHOP.

Since JSHOP is an older implementation, it does not have
all the capabilities of SHOP2. Many of the domain de-
scriptions that were written for SHOP2 cannot be run with
JSHOP, nor can they be adapted to run with JSHOP, because
those domain descriptions require some of the methods to
have partially ordered subtasks. Thus, in order to do a full
comparison, we were forced to run our experiments on two
older domains: blocks world and logistics.

For our experimental comparisons, we used two differ-
ent versions of each domain: (1) a simple and relatively
straightforward version of the domain description, and (2) a
second and more sophisticated version that contained some
extra information to guide the planner in order to improve
its efficiency. The reason for this was to investigate whether
the optimizations made by our approach were independent
of the kinds of optimizations a knowledgeable domain au-
thor might make (in which case JSHOP2 should provide the
same kinds of speedups on both versions of the domain de-
scription), or were optimizations that a knowledgeable do-
main author would write anyway (in which case the JSHOP2
would give less of a speedup on themore sophisticated ver-
sion of the domain).

The results are shown in Figures 2, 3, 4 and 5. Each data
point time is an average of time spent to find a plan on ten
different randomly-generated problems of the given problem
size. In the blocks world, the problem size is the number
of blocks in the world. For logistics, the problem size is
the number of packages to be delivered. These experiments
were conducted on a Sun Ultra 10 machine with a 440 MHz
SUNW UltraSPARC-IIi CPU and 128 megabytes of RAM.

Several observations can be made:

• JSHOP is considerably slower than both SHOP2 and
JSHOP2, and it fails to find plans for several of the bigger
planning problems. This is partly because JSHOP is an
older implementation and thus it does not include many of
the improvements included in SHOP2. The other reason
is that because of the nature of SHOP planning algorithm,
Lisp is probably a better language in which to implement
it. Therefore, to say that JSHOP2’s speed is just a result
of migrating from Lisp to Java is not a valid argument.

• JSHOP2 is as fast as SHOP2 in smaller problems and



Figure 2: Blocks World, Simple Implementation

Figure 3: Blocks World, Optimized Implementation



Figure 4: Logistics, Simple Implementation

Figure 5: Logistics, Optimized Implementation



faster than SHOP2 in bigger problems in both domains,
and in both versions of each domain. This suggests that
the improvements that can be achieved by having a better
domain description are independent of the improvements
that can be achieved using our approach.

• In several of the experiments, the gap between SHOP2’s
and JSHOP2’s running time increases by more than just a
constant factor as the problem size increases. This rein-
forces the conclusion that JSHOP2’s speed-ups are caused
by fundamental differences between two approaches,
rather than just by using Java instead of Lisp.

• JSHOP2 only exhibited a polynomial-time improvement
over SHOP2—but such a speedup is quite significant
since both planners are already running in polynomial
time on these problems. In the last planning competition
(seehttp://www.dur.ac.uk/d.p.long/competition.html),
SHOP2 and the other two hand-tailorable planners often
ran in polynomial time. The amount of improvement is
enough that if JSHOP2 had been used in the last plan-
ning competition rather than SHOP2, it would have made
a huge difference in the outcome of the competition.

Related Work
Several researchers have worked on automatically synthesiz-
ing domain-specific information to improve the performance
of domain-independent planners and schedulers:

Srivastava, Kambhampati, and Mali in (Srivastava,
Kambhampati, & Mali. 1997) describe CLAY. CLAY is a
planner synthesis tool based on a semi-automated software
synthesis system, namely KIDS (Kestrel Interactive Devel-
opment System) (Smith 1992). In this work, arefinement
planning theoryis combined with domain-specific knowl-
edge to derive a domain-specific planner in REFINE, which
is a first-order logic language. The generated code can then
be translated into Common Lisp or C. KTS (Kestrel Trans-
portation Scheduler) (Smith & Parra 1993) is another system
based on KIDS which is aimed at deriving domain-specific
schedulers from domain descriptions.

Planware II (Becker, Gilham, & Smith 2003) and its pre-
decessor Planware (Blaineet al. 1998) are integrated devel-
opment environments that are used to model complex plan-
ning and scheduling problems and deriving domain-specific
code based on those models to solve those problems.

In (Long & Fox 1998), Long and Fox introduce Plan-
ning Abstract Machine (PAM). PAM is essentially a com-
piler for declarative planning domain description. It outputs
a domain-specific planner code in an intermediate abstract
language which can in turn be translated into C++ code.

In (Winner & Veloso 2002), plan examples are used to
learn plan templates. These plan templates are pieces of
code that compactly represent the domain-specific infor-
mation learned during the planning process. These plan
templates are then merged and generalized to synthesize
domain-specific planners that can then be used to solve new
problems in that domain.

One of the biggest challenges of using hand-tailorable
planners is that providing them with domain-specific knowl-
edge is a tedious and time-consuming task. To address this

issue, several researchers have tried to automatize the pro-
cess of acquiring such knowledge:

Domain analysis(Fox & Long 2002) is introduced by
Long and Fox as a technique to automatically obtain
domain-specific knowledge. This technique is based on try-
ing to identify generic patterns of behavior in different plan-
ning domains, and then use domain-specific instances of
those generic behaviors to guide the planner in its search
process. This work has resulted in a system calledTIM (Fox
& Long 1998) (Type Inference Machinery). This system
is used in a planner namedSTAN (STatic ANalysis plan-
ner) (Fox & Long 2001).

In (McCluskey & J. M 1997), the authors suggest an
object-centered (as opposed to literal-centered ) specifica-
tion language to describe planning domains. They also intro-
duce tools to operationalize those domain models. It is worth
to remind the reader that McCluskey and Porteous have used
the term compilation in their paper to refer to a totally dif-
ferent concept: What they mean by compilation isdomain
compilation, which refers to the process of analyzing a do-
main description in advance to acquire the information that
can be used to guide the planner during its search to find a
plan. However, that acquired information should be fed to a
general-purpose planner which acts as the interpreter of that
information. What we mean by compilation in this paper
is planner compilation, which refers to synthesis of a plan-
ner for a given domain description which can then be run
independently to solve problems in that domain. In this pa-
per, the authors also suggest methods to automatically derive
macro-operatorsfrom the domain description. Another sys-
tem that makes use of such techniques is STATIC (Etzioni
1990) which is part of the PRODIGY architecture (Minton
et al. 1989).

Conclusion and Future Work
In this paper, we presented the idea of compiling a do-
main description for a hand-tailorable planner to a domain-
specific program. Moreover, we chose to compile domain
descriptions directly to executable programs, rather than an
intermediate abstract language. We also presented examples
of how doing this gives the planner designer much more con-
trol over how the planner works. This process is transparent
from the point of view of the end-user of the planning sys-
tem: although the output of this process is a domain-specific
planner, the overall process (compiling a domain description
and running it) is domain-independent.

Our experimental comparison of JSHOP2 to JSHOP and
SHOP2 shows that compilation makes the planning algo-
rithm significantly faster. In fact, the amount of improve-
ment is enough that if JSHOP2 had been used in the last
planning competition rather than SHOP2, it would have
made a huge difference in the outcome of the competition.
Our experiments also show that even when the planner is
provided with a good domain description that has been hand-
tuned by an experienced human user, our approach still pro-
vides a similar degree of speed-up. This important observa-
tion suggests two things:

• It suggests that our approach can still be beneficial when



coupled with various other techniques that the planning
community has developed for improving the search pro-
cess by automatically analyzing domain description to
gather information that can later be used to guide the plan-
ner.

• It also suggests that because of the limitations of inter-
preters, there are certain improvements that cannot be
made by providing a hand-tailorable planner with bet-
ter and better domain descriptions. In other words, we
think thatshifting from domain-description interpretation
to domain-description compilationis necessary for the
potential of hand-tailorable planners to be fully realized.
What we presented in this paper is just a first step toward

making use of the advantages that compilation has over in-
terpretation. In our future work, we intend to look for com-
mon characteristics of all hand-tailorable planners that can
be used to provide additional speed-ups. We also intend to
extend our compilation process so that it can perform opti-
mizations based on run-time information (such as the statis-
tics about how frequently backtracking happens in each de-
cision point) rather than generating code based on only static
analysis of the domain description.
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